3.466 \(\int \frac {A+B \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=326 \[ \frac {2 \left (a^2 A+3 a b B-4 A b^2\right ) \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{3 a^2 d \left (a^2-b^2\right ) \sqrt {\sec (c+d x)}}+\frac {2 b (A b-a B) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (a^2 A-6 a b B+8 A b^2\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{3 a^3 d \sqrt {a+b \sec (c+d x)}}-\frac {2 \left (-3 a^3 B+5 a^2 A b+6 a b^2 B-8 A b^3\right ) \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{3 a^3 d \left (a^2-b^2\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}} \]

[Out]

2*b*(A*b-B*a)*sin(d*x+c)/a/(a^2-b^2)/d/sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2)+2/3*(A*a^2+8*A*b^2-6*B*a*b)*(co
s(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*((b+a*cos(d
*x+c))/(a+b))^(1/2)*sec(d*x+c)^(1/2)/a^3/d/(a+b*sec(d*x+c))^(1/2)+2/3*(A*a^2-4*A*b^2+3*B*a*b)*sin(d*x+c)*(a+b*
sec(d*x+c))^(1/2)/a^2/(a^2-b^2)/d/sec(d*x+c)^(1/2)-2/3*(5*A*a^2*b-8*A*b^3-3*B*a^3+6*B*a*b^2)*(cos(1/2*d*x+1/2*
c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*(a+b*sec(d*x+c))^(1/2)/a^
3/(a^2-b^2)/d/((b+a*cos(d*x+c))/(a+b))^(1/2)/sec(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.84, antiderivative size = 326, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.257, Rules used = {4030, 4104, 4035, 3856, 2655, 2653, 3858, 2663, 2661} \[ \frac {2 \left (a^2 A+3 a b B-4 A b^2\right ) \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{3 a^2 d \left (a^2-b^2\right ) \sqrt {\sec (c+d x)}}+\frac {2 b (A b-a B) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (a^2 A-6 a b B+8 A b^2\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{3 a^3 d \sqrt {a+b \sec (c+d x)}}-\frac {2 \left (5 a^2 A b-3 a^3 B+6 a b^2 B-8 A b^3\right ) \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{3 a^3 d \left (a^2-b^2\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Sec[c + d*x])/(Sec[c + d*x]^(3/2)*(a + b*Sec[c + d*x])^(3/2)),x]

[Out]

(2*(a^2*A + 8*A*b^2 - 6*a*b*B)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[S
ec[c + d*x]])/(3*a^3*d*Sqrt[a + b*Sec[c + d*x]]) - (2*(5*a^2*A*b - 8*A*b^3 - 3*a^3*B + 6*a*b^2*B)*EllipticE[(c
 + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(3*a^3*(a^2 - b^2)*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*Sq
rt[Sec[c + d*x]]) + (2*b*(A*b - a*B)*Sin[c + d*x])/(a*(a^2 - b^2)*d*Sqrt[Sec[c + d*x]]*Sqrt[a + b*Sec[c + d*x]
]) + (2*(a^2*A - 4*A*b^2 + 3*a*b*B)*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(3*a^2*(a^2 - b^2)*d*Sqrt[Sec[c + d
*x]])

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 3856

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3858

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(Sqrt[d*
Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]])/Sqrt[a + b*Csc[e + f*x]], Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4030

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(b*(A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n)/
(a*f*(m + 1)*(a^2 - b^2)), x] + Dist[1/(a*(m + 1)*(a^2 - b^2)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*
x])^n*Simp[A*(a^2*(m + 1) - b^2*(m + n + 1)) + a*b*B*n - a*(A*b - a*B)*(m + 1)*Csc[e + f*x] + b*(A*b - a*B)*(m
 + n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b
^2, 0] && LtQ[m, -1] &&  !(ILtQ[m + 1/2, 0] && ILtQ[n, 0])

Rule 4035

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 4104

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m +
1)*(d*Csc[e + f*x])^n)/(a*f*n), x] + Dist[1/(a*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[
a*B*n - A*b*(m + n + 1) + a*(A + A*n + C*n)*Csc[e + f*x] + A*b*(m + n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ
[{a, b, d, e, f, A, B, C, m}, x] && NeQ[a^2 - b^2, 0] && LeQ[n, -1]

Rubi steps

\begin {align*} \int \frac {A+B \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^{3/2}} \, dx &=\frac {2 b (A b-a B) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {2 \int \frac {\frac {1}{2} \left (-a^2 A+4 A b^2-3 a b B\right )+\frac {1}{2} a (A b-a B) \sec (c+d x)-b (A b-a B) \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)}} \, dx}{a \left (a^2-b^2\right )}\\ &=\frac {2 b (A b-a B) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (a^2 A-4 A b^2+3 a b B\right ) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)}}+\frac {4 \int \frac {\frac {1}{4} \left (-5 a^2 A b+8 A b^3+3 a^3 B-6 a b^2 B\right )+\frac {1}{4} a \left (a^2 A+2 A b^2-3 a b B\right ) \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx}{3 a^2 \left (a^2-b^2\right )}\\ &=\frac {2 b (A b-a B) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (a^2 A-4 A b^2+3 a b B\right ) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)}}+\frac {\left (a^2 A+8 A b^2-6 a b B\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}} \, dx}{3 a^3}-\frac {\left (5 a^2 A b-8 A b^3-3 a^3 B+6 a b^2 B\right ) \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx}{3 a^3 \left (a^2-b^2\right )}\\ &=\frac {2 b (A b-a B) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (a^2 A-4 A b^2+3 a b B\right ) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)}}+\frac {\left (\left (a^2 A+8 A b^2-6 a b B\right ) \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {b+a \cos (c+d x)}} \, dx}{3 a^3 \sqrt {a+b \sec (c+d x)}}-\frac {\left (\left (5 a^2 A b-8 A b^3-3 a^3 B+6 a b^2 B\right ) \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {b+a \cos (c+d x)} \, dx}{3 a^3 \left (a^2-b^2\right ) \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}}\\ &=\frac {2 b (A b-a B) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (a^2 A-4 A b^2+3 a b B\right ) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)}}+\frac {\left (\left (a^2 A+8 A b^2-6 a b B\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{3 a^3 \sqrt {a+b \sec (c+d x)}}-\frac {\left (\left (5 a^2 A b-8 A b^3-3 a^3 B+6 a b^2 B\right ) \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}} \, dx}{3 a^3 \left (a^2-b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}\\ &=\frac {2 \left (a^2 A+8 A b^2-6 a b B\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{3 a^3 d \sqrt {a+b \sec (c+d x)}}-\frac {2 \left (5 a^2 A b-8 A b^3-3 a^3 B+6 a b^2 B\right ) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{3 a^3 \left (a^2-b^2\right ) d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}+\frac {2 b (A b-a B) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (a^2 A-4 A b^2+3 a b B\right ) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.61, size = 252, normalized size = 0.77 \[ \frac {2 \sec ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+b) \left (a (a-b) (a+b) \sin (c+d x) \left (b \left (a^2 A+3 a b B-4 A b^2\right )+a A \left (a^2-b^2\right ) \cos (c+d x)\right )+\left (a^2-b^2\right ) \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \left (a^2 \left (a^2 A-3 a b B+2 A b^2\right ) F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )+\left (3 a^3 B-5 a^2 A b-6 a b^2 B+8 A b^3\right ) \left ((a+b) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )-b F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )\right )\right )\right )}{3 a^3 d \left (a^2-b^2\right )^2 (a+b \sec (c+d x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Sec[c + d*x])/(Sec[c + d*x]^(3/2)*(a + b*Sec[c + d*x])^(3/2)),x]

[Out]

(2*(b + a*Cos[c + d*x])*Sec[c + d*x]^(3/2)*((a^2 - b^2)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*(a^2*(a^2*A + 2*A*b
^2 - 3*a*b*B)*EllipticF[(c + d*x)/2, (2*a)/(a + b)] + (-5*a^2*A*b + 8*A*b^3 + 3*a^3*B - 6*a*b^2*B)*((a + b)*El
lipticE[(c + d*x)/2, (2*a)/(a + b)] - b*EllipticF[(c + d*x)/2, (2*a)/(a + b)])) + a*(a - b)*(a + b)*(b*(a^2*A
- 4*A*b^2 + 3*a*b*B) + a*A*(a^2 - b^2)*Cos[c + d*x])*Sin[c + d*x]))/(3*a^3*(a^2 - b^2)^2*d*(a + b*Sec[c + d*x]
)^(3/2))

________________________________________________________________________________________

fricas [F]  time = 0.58, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (B \sec \left (d x + c\right ) + A\right )} \sqrt {b \sec \left (d x + c\right ) + a} \sqrt {\sec \left (d x + c\right )}}{b^{2} \sec \left (d x + c\right )^{4} + 2 \, a b \sec \left (d x + c\right )^{3} + a^{2} \sec \left (d x + c\right )^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))/sec(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

integral((B*sec(d*x + c) + A)*sqrt(b*sec(d*x + c) + a)*sqrt(sec(d*x + c))/(b^2*sec(d*x + c)^4 + 2*a*b*sec(d*x
+ c)^3 + a^2*sec(d*x + c)^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {B \sec \left (d x + c\right ) + A}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sec \left (d x + c\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))/sec(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)/((b*sec(d*x + c) + a)^(3/2)*sec(d*x + c)^(3/2)), x)

________________________________________________________________________________________

maple [B]  time = 2.31, size = 2285, normalized size = 7.01 \[ \text {Expression too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sec(d*x+c))/sec(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(3/2),x)

[Out]

-2/3/d*(6*A*sin(d*x+c)*(1/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+co
s(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)*a^2*b+8*A*sin(d*x+c)*(1/(1+cos(d*x+c
)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+
c),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)*a*b^2+4*A*((a-b)/(a+b))^(1/2)*cos(d*x+c)*a^2*b+A*((a-b)/(a+b))^(1/2)*cos(d
*x+c)^3*a^2*b-4*A*((a-b)/(a+b))^(1/2)*cos(d*x+c)^2*a*b^2+3*B*((a-b)/(a+b))^(1/2)*cos(d*x+c)^2*a^2*b+8*A*Ellipt
icE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*b^3*(1/(1+cos(d*x+c)))^(1/2)*((b+a*co
s(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*sin(d*x+c)+A*cos(d*x+c)^3*((a-b)/(a+b))^(1/2)*a^3+3*B*((a-b)/(a+b))^(1/2
)*cos(d*x+c)^2*a^3-3*B*a^3*((a-b)/(a+b))^(1/2)*cos(d*x+c)-A*((a-b)/(a+b))^(1/2)*cos(d*x+c)*a^3-8*A*((a-b)/(a+b
))^(1/2)*cos(d*x+c)*b^3-5*A*sin(d*x+c)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))
^(1/2))*(1/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*cos(d*x+c)*a^2*b-6*B*sin(d*x+c)
*(1/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b)
)^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)*a^2*b-6*B*sin(d*x+c)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b
))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/
2)*cos(d*x+c)*a*b^2-3*B*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^3*(1/
(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*sin(d*x+c)+A*EllipticF((-1+cos(d*x+c))*((a
-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^3*(1/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c)
)/(a+b))^(1/2)*sin(d*x+c)+8*A*b^3*((a-b)/(a+b))^(1/2)-A*a^2*b*((a-b)/(a+b))^(1/2)+4*A*a*b^2*((a-b)/(a+b))^(1/2
)-3*B*a^2*b*((a-b)/(a+b))^(1/2)-6*B*a*b^2*((a-b)/(a+b))^(1/2)+3*B*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2
)*(1/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^3*
sin(d*x+c)+6*B*((a-b)/(a+b))^(1/2)*cos(d*x+c)*a*b^2-4*A*cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*a^2*b+A*sin(d*x+c)*(1
/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(
1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)*a^3+8*A*sin(d*x+c)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1
/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*co
s(d*x+c)*b^3-3*B*sin(d*x+c)*(1/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((
-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)*a^3+6*A*EllipticF((-1+cos(d*x+c
))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2*b*(1/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+co
s(d*x+c))/(a+b))^(1/2)*sin(d*x+c)+8*A*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^
(1/2))*a*b^2*(1/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*sin(d*x+c)-5*A*EllipticE((
-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2*b*(1/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d
*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*sin(d*x+c)-6*B*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(
a+b)/(a-b))^(1/2))*a^2*b*(1/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*sin(d*x+c)-6*B
*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a*b^2*(1/(1+cos(d*x+c)))^(1/2)
*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*sin(d*x+c)+3*B*sin(d*x+c)*(1/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*
x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2
))*cos(d*x+c)*a^3)*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)*cos(d*x+c)^2*(1/cos(d*x+c))^(3/2)/sin(d*x+c)/(b+a*cos(d
*x+c))/a^3/(a+b)/((a-b)/(a+b))^(1/2)

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))/sec(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}}{{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{3/2}\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B/cos(c + d*x))/((a + b/cos(c + d*x))^(3/2)*(1/cos(c + d*x))^(3/2)),x)

[Out]

int((A + B/cos(c + d*x))/((a + b/cos(c + d*x))^(3/2)*(1/cos(c + d*x))^(3/2)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))/sec(d*x+c)**(3/2)/(a+b*sec(d*x+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________